1 Narmadha G., (2022), A low power and high speed approximate adder for image processing applications. J. Eng. Res. 10: 150-160.
2 Mohammadi Ghantghestani M., Ghavami B., Salehpour H., (2017), A CNFET full adder cell design for high-speed arithmetic units. Turkish J. Elec. Eng. Comp. Sci. 25: 2399-2409.
https://doi.org/10.3906/elk-1512-8
5 Liang J., Chen L., Han J., Lombardi F., (2014), Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs. IEEE Transact. Nanotechnol. 13: 695-708.
https://doi.org/10.1109/TNANO.2014.2316000
6 Mohammadi Ghanatghestani M., Pedram H., Ghavami B., (2015), Design of a low-standby power and high-speed ternary memory cell based on carbon nanotube FET. J. Comput. Theoret. Nanosci. Am. Sci. Pub. 12: 5457-5462.
https://doi.org/10.1166/jctn.2015.4546
7 Miller D. M., Dueck G. W., Maslov D., (2004), A synthesis method for MVL reversible logic In Proceedings. 34th Int. Sympos. Multiple-Valued Logic (pp. 74-80). IEEE.
8 Panahi A., Sharifi F., Moaiyeri, M. H., Navi K., (2016), CNFET-based approximate ternary adders for energy-efficient image processing applications. Microproces. Microsys. 47: 454-465.
https://doi.org/10.1016/j.micpro.2016.07.015
9 Safaei Mehrabani Y., Mohammadi Ghanatghestani M., SharifiRad R., Hassanzadeh A. M., (2022), Power-efficient and high-speed design of approximate full adders using CNFET technology. Int. J. Nano Dimens. 13: 179-196.
11 Yang Z., Jain A., Liang J., Han J., Lombardi F., (2013), Approximate XOR/XNOR-based adders for inexact computing. 13Th IEEE Int. Conf. Nanotechnol. (IEEE-NANO 2013) (pp. 690-693). IEEE.
https://doi.org/10.1109/NANO.2013.6720793
12 Mohammadi A., Mohammadi Ghanatghestani M., Sabbagh Molahosseini A., Safaei Mehrabani A., (2022), Image processing with high-speed and low-energy approximate arithmetic circuit. Sustainable Computing: Informatics and Systems. 36: 100785-100790.
https://doi.org/10.1016/j.suscom.2022.100785
13 Liang J., Han J., Lombardi F., (2012), New metrics for the reliability of approximate and probabilistic adders. IEEE Transact. Comput. 62: 1760-1771.
https://doi.org/10.1109/TC.2012.146
14 Mohammadi A., Mohammadi Ghanatghestani M., Sabbagh Molahosseini A., Safaei Mehrabani A., (2022), High-performance and energy-area efficient approximate full adder for error tolerant applications. ECS J. Solid State Sci. Technol. 11: 081010-081014.
https://doi.org/10.1149/2162-8777/ac861c
15 Liu C., Han J., Lombardi F., (2014), A low-power, high-performance approximate multiplier with configurable partial error recovery. In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1-4). IEEE.
https://doi.org/10.7873/DATE2014.108
16 Cho G., Kim Y. B., Lombardi F., Choi M. (2009), Performance evaluation of CNFET-based logic gates. IEEE Instrum. Meas. Technol. Conf. (pp. 909-912). IEEE.
17 Shankar, B., Tiwari, P., Gupta, D., Ojha, (2022), Comparative analysis of Full Adders using CNTFET in 32 nm Technology. In 2022 3rd Int. Conf. Intell. Eng. Manag. (ICIEM) (pp. 279-284). IEEE.
https://doi.org/10.1109/ICIEM54221.2022.9853015
18 Karim-Nezhad G., Khorablou Z., Seyed Dorraji P., (2018), Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethyl -ammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin. Int. J. Nano Dimens. 9: 314-324.
19 Jabeen S., Ahmad N., Bala S., Bano D., Khan T., (2023), Nanotechnology in environment sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water: A review. Int. J. Nano Dimens. 14: 1-28.
21 Cho G., Kim Y. B., Lombardi F., Choi M., (2009), Performance evaluation of CNFET-based logic gates. In 2009 IEEE Inst. Meas. Technol. Conf. (pp. 909-912). IEEE.
22 Ebrahimi S. A., Reshadinezhad M. R., Bohlooli A., Shahsavari M., (2016)., Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelect. J. 53: 156-166.
https://doi.org/10.1016/j.mejo.2016.04.016
23 Deng J., Wong H. S. P., (2007), A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application -Part I: Model of the intrinsic channel region. IEEE Transact. Electron Dev. 54: 3186-3194.
https://doi.org/10.1109/TED.2007.909030
24 Deng J., Wong H. S. P., (2007), A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: Full device model and circuit performance benchmarking. IEEE Transact. Electron Dev. 54: 3195-3205.
https://doi.org/10.1109/TED.2007.909043
25 Mohammadi Ghanatghestani M., Ghavami B., Pedram H., (2018), A ternary full adder cell based on carbon nanotube FET for high-speed arithmetic units. J. Nano Electronics and Optoelect. 13: 368-377.
https://doi.org/10.1166/jno.2018.2244
26 Bolourforoush A., Mohammadi Ghanatghestani, M., (2022), A New Quaternary Full Adder Cell based on CNFET for Use in Fast Arithmetic Circuits. ECS J. Solid State Sci. Technol. 11: 091011.
https://doi.org/10.1149/2162-8777/ac91f4
27 Etiemble D., (2022), Two new CNTFET quaternary full adders for carry-propagate adders. ArXiv Preprint ArXiv:2207: 01401.
29 Fakhari S., Hajizadeh Bastani N., Moaiyeri M. H., (2019), A low-power and area-efficient quaternary adder based on CNTFET switching logic. Anal. Integ. Circ. Sig. Process. 98: 221-232.
https://doi.org/10.1007/s10470-018-1367-2
31 Ebrahimi S. A., Reshadinezhad M. R., Bohlooli A., Shahsavari M., (2016), Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectronics J. 53: 156-166.
https://doi.org/10.1016/j.mejo.2016.04.016