A fast approximate quaternary full adder using a parallel design based on Carbon nanotube FET

Document Type : Reasearch Paper

Authors

1 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.

2 Department of Computer Engineering, Bam branch, Islamic Azad University, Bam, Iran.

Abstract

Novel design methodologies of digital circuits have been caught in the spotlight of attention as a result of the dramatic increase in available data and the requirement for data processing among which Full adder cells are significant elements in arithmetic circuits design. The use of approximate computing and Multi Value Logic (MVL) can improve computational circuit efficiency. Carbon Nano Tube Field Effect Transistors (CNTFETs) with an adjustable threshold voltage is effective in the design of MVL circuits. This paper proposes a new CNTFET-based approximate quaternary full adder to reduce the area, delay, and power consumption. The Synopsys HSPICE results obtained based on 32nm Stanford CNTFET technology showed that the proposed model had much lower average power consumption, delay, power-delay product (PDP), and size as compared to other approximate full adders.

Keywords

Main Subjects


1   Narmadha G., (2022), A low power and high speed approximate adder for image processing applications. J. Eng. Res. 10: 150-160.
2   Mohammadi Ghantghestani M., Ghavami B., Salehpour H., (2017), A CNFET full adder cell design for high-speed arithmetic units. Turkish J. Elec. Eng. Comp. Sci. 25: 2399-2409.
https://doi.org/10.3906/elk-1512-8
3   Reshadinezhad M. R., Moaiyeri, M. H., Navi K., (2012), An energy-efficient full adder cell using CNFET technology. IEICE Transact. Electronics. 95: 744-751.
https://doi.org/10.1587/transele.E95.C.744
4   Sadeghi B., Vahdati R. A. R., (2012), Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. Appl. Surf. Sci. 258: 3086-3088.
https://doi.org/10.1016/j.apsusc.2011.11.042
5   Liang J., Chen L., Han J., Lombardi F., (2014), Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs. IEEE Transact. Nanotechnol. 13: 695-708.
https://doi.org/10.1109/TNANO.2014.2316000
6   Mohammadi Ghanatghestani M., Pedram H., Ghavami B., (2015), Design of a low-standby power and high-speed ternary memory cell based on carbon nanotube FET. J. Comput. Theoret. Nanosci. Am. Sci. Pub. 12: 5457-5462.
https://doi.org/10.1166/jctn.2015.4546
7   Miller D. M., Dueck G. W., Maslov D., (2004), A synthesis method for MVL reversible logic In Proceedings. 34th Int. Sympos. Multiple-Valued Logic (pp. 74-80). IEEE.
8   Panahi A., Sharifi F., Moaiyeri, M. H., Navi K., (2016), CNFET-based approximate ternary adders for energy-efficient image processing applications. Microproces. Microsys. 47: 454-465.
https://doi.org/10.1016/j.micpro.2016.07.015
9   Safaei Mehrabani Y., Mohammadi Ghanatghestani M., SharifiRad R., Hassanzadeh A. M., (2022), Power-efficient and high-speed design of approximate full adders using CNFET technology. Int. J. Nano Dimens. 13: 179-196.
10   Han J., Orshansky M., (2013), Approximate computing: An emerging paradigm for energy-efficient design. 18th IEEE Europ. Test Symp. (ETS) (pp. 1-6). IEEE.
https://doi.org/10.1109/ETS.2013.6569370
11   Yang Z., Jain A., Liang J., Han J., Lombardi F., (2013), Approximate XOR/XNOR-based adders for inexact computing. 13Th IEEE Int. Conf. Nanotechnol. (IEEE-NANO 2013) (pp. 690-693). IEEE.
https://doi.org/10.1109/NANO.2013.6720793
12   Mohammadi A., Mohammadi Ghanatghestani M., Sabbagh Molahosseini A., Safaei Mehrabani A., (2022), Image processing with high-speed and low-energy approximate arithmetic circuit. Sustainable Computing: Informatics and Systems. 36: 100785-100790.
https://doi.org/10.1016/j.suscom.2022.100785
13   Liang J., Han J., Lombardi F., (2012), New metrics for the reliability of approximate and probabilistic adders. IEEE Transact. Comput. 62: 1760-1771.
https://doi.org/10.1109/TC.2012.146
14   Mohammadi A., Mohammadi Ghanatghestani M., Sabbagh Molahosseini A., Safaei Mehrabani A., (2022), High-performance and energy-area efficient approximate full adder for error tolerant applications. ECS J. Solid State Sci. Technol. 11: 081010-081014.
https://doi.org/10.1149/2162-8777/ac861c
15   Liu C., Han J., Lombardi F., (2014), A low-power, high-performance approximate multiplier with configurable partial error recovery. In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1-4). IEEE.
https://doi.org/10.7873/DATE2014.108
16   Cho G., Kim Y. B., Lombardi F., Choi M. (2009), Performance evaluation of CNFET-based logic gates. IEEE Instrum. Meas. Technol. Conf. (pp. 909-912). IEEE.
17   Shankar, B., Tiwari, P., Gupta, D., Ojha, (2022), Comparative analysis of Full Adders using CNTFET in 32 nm Technology. In 2022 3rd Int. Conf. Intell. Eng. Manag. (ICIEM) (pp. 279-284). IEEE.
https://doi.org/10.1109/ICIEM54221.2022.9853015
18   Karim-Nezhad G., Khorablou Z., Seyed Dorraji P., (2018), Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethyl -ammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin. Int. J. Nano Dimens. 9: 314-324.
19   Jabeen S., Ahmad N., Bala S., Bano D., Khan T., (2023), Nanotechnology in environment sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water: A review. Int. J. Nano Dimens. 14: 1-28.
20   Sharma T., Kumre L., (2020), CNFET based design of unbalanced ternary circuits using efficient shifting literals. Microelect. J. 104: 104869.
https://doi.org/10.1016/j.mejo.2020.104869
21   Cho G., Kim Y. B., Lombardi F., Choi M., (2009), Performance evaluation of CNFET-based logic gates. In 2009 IEEE Inst. Meas. Technol. Conf. (pp. 909-912). IEEE.
22   Ebrahimi S. A., Reshadinezhad M. R., Bohlooli A., Shahsavari M., (2016)., Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelect. J. 53: 156-166.
https://doi.org/10.1016/j.mejo.2016.04.016
23   Deng J., Wong H. S. P., (2007), A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application -Part I: Model of the intrinsic channel region. IEEE Transact. Electron Dev. 54: 3186-3194.
https://doi.org/10.1109/TED.2007.909030
24   Deng J., Wong H. S. P., (2007), A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: Full device model and circuit performance benchmarking. IEEE Transact. Electron Dev. 54: 3195-3205.
https://doi.org/10.1109/TED.2007.909043
25   Mohammadi Ghanatghestani M., Ghavami B., Pedram H., (2018), A ternary full adder cell based on carbon nanotube FET for high-speed arithmetic units. J. Nano Electronics and Optoelect. 13: 368-377.
https://doi.org/10.1166/jno.2018.2244
26   Bolourforoush A., Mohammadi Ghanatghestani, M., (2022), A New Quaternary Full Adder Cell based on CNFET for Use in Fast Arithmetic Circuits. ECS J. Solid State Sci. Technol. 11: 091011.
https://doi.org/10.1149/2162-8777/ac91f4
27   Etiemble D., (2022), Two new CNTFET quaternary full adders for carry-propagate adders. ArXiv Preprint ArXiv:2207: 01401.
28   Chauhan A., Mahor L., Tiwari P., (2020), Low power quaternary adder using CNFET. In 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS) (pp. 109-114). IEEE.
https://doi.org/10.1109/VLSIDCS47293.2020.9179898
29   Fakhari S., Hajizadeh Bastani N., Moaiyeri M. H., (2019), A low-power and area-efficient quaternary adder based on CNTFET switching logic. Anal. Integ. Circ. Sig. Process. 98: 221-232.
https://doi.org/10.1007/s10470-018-1367-2
30   Roosta E., Hosseini S. A., (2019), A novel multiplexer-based quaternary full adder in nanoelectronics. Circ. Sys. Signal Proces. 38: 4056-4078.
https://doi.org/10.1007/s00034-019-01039-8
31   Ebrahimi S. A., Reshadinezhad M. R., Bohlooli A., Shahsavari M., (2016), Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectronics J. 53: 156-166.
https://doi.org/10.1016/j.mejo.2016.04.016
32   Sharifi F., Moaiyeri M. H., Navi K., (2015), A novel quaternary full adder cell based on nanotechnology. Int. J. Modern Educ. Comp. Sci. 7: 19-25.
https://doi.org/10.5815/ijmecs.2015.03.03