[2] Bangale M. S., Mitkare S. S., Gattani S. G., Sakarkar D. M., (2012), Recent nanotechnological aspects in cosmetics and dermatological preparations. Int. J. Pharm. Pharm. Sci. 4: 88-97.
[3] Vance M. E., Kuiken T., Vejerano E. P., McGinnis S. P., Hochella M. F., Hull D. R., (2015), Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6: 1769-1780.
https://doi.org/10.3762/bjnano.6.181
[6] Santos A. C., Panchal A., Rahman N., Pereira-Silva M., Pereira I., Veiga F., Lvov Y., (2019), Evolution of hair treatment and care: Prospects of nanotube-based formulations. Nanomaterials. 9: 903-906.
https://doi.org/10.3390/nano9060903
[8] Pastrana H., Avila A., Tsai C. S. J., (2018), Nanomaterials in cosmetic products: the challenges with regard to current legal frameworks and consumer exposure. Nanoethics. 12: 123-137.
https://doi.org/10.1007/s11569-018-0317-x
[9] Carrouel F., Viennot S., Ottolenghi L., Gaillard C., Bourgeois D., (2020), Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials. 10: 140-145.
https://doi.org/10.3390/nano10010140
[10] Revia R. A., Wagner B. A., Zhang M., (2019), A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials. 9: 1317-1321.
https://doi.org/10.3390/nano9091317
[11] Wendel A., Ghyczy M., (1990), Liposomal cosmetics. Soap Cosmet Chem Spectrosc. 6: 33-37.
[12] Grumezescu A. M., (2016), Nanobiomaterials in galenic formulations and cosmetics: Applications of nanobiomaterials. In: Nanobiomaterials galen. Formul. Cosmet. Appl. Nanobiomaterials. 1-433
[13] Miller G., (2006), Nanomaterials, sunscreens and cosmetics: Small Ingredients Big Rsks. Friends of the Earth, 68-70.
[14] Tiwari S., Singh R., Tawaniya J., (2013), Review on nanotechnology with several aspects. Int. J. Res. Comput. Eng. Electron. 2: 1-8.
[16] Srinivas K., (2016), The current role of nanomaterials in cosmetics. J. Chem. Pharm. Res. 8: 906-914.
[20] Meyer R., Wenk, H. H. J.. S., (2008), Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 134: 58-60, 62-65.
[21] Hoeller S., Sperger A., Valenta C., (2009), Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int. J. Pharm. 370: 181-186.
https://doi.org/10.1016/j.ijpharm.2008.11.014
[22] Yilmaz E., Borchert H. H., (2006), Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-An in vivo study. Int. J. Pharm. 307: 232-238.
https://doi.org/10.1016/j.ijpharm.2005.10.002
[23] Gesztesi J. L., Santos L. M., Hennieis P. D. T., (2015), An oil in water nanoemulsion a cosmetic composition and a cosmetic product comprising it, a process for preparing said nanoemulsion. Application PCT/BR2005/000222 events.
[24] Ribier A., Simonnet J., Legret S., (1998), Transparent nanoemulsion less than 100 NM based on fluid non-ionic amphiphilic lipids and use in cosmetic or in dermopharmaceuticals. Application US08/607,353 events.
[26] Patel R. P., Joshi J. R., (2012), An overview on nanoemulsion: A novel approach. Int. J. Pharm. Sci. Res. 3: 4640-4650.
[29] Qian C., McClements D. J., (2011), Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 25: 1000-1008.
https://doi.org/10.1016/j.foodhyd.2010.09.017
[31] Duarah S., Pujari K., Durai R. D., Narayanan V. H. B., (2016), Nanotechnology-based cosmeceuticals: A review. Int. J. Appl. Pharm. 8: 8-12.
[32] Porras M., Solans C., González C., Martínez A., Guinart A., Gutiérrez J. M., (2004), Studies of formation of W/O nano-emulsions. Colloids Surf. A Physicochem Eng. Asp. 249: 115-118.
https://doi.org/10.1016/j.colsurfa.2004.08.060
[33] Saraswat A., Agarwal R., Katare O. P., Kaur I., Kumar B., (2007), A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatolog Treat. 18: 40-45.
https://doi.org/10.1080/09546630601028729
[34] Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K., (2013), Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 8: 1-9.
https://doi.org/10.1186/1556-276X-8-102
[35] Bei D., Meng J., Youan B. B. C., (2010), Engineering nanomedicines for improved melanoma therapy: Progress and promises. Nanomedicine. 5: 1385-1399.
https://doi.org/10.2217/nnm.10.117
[38] Karim K., Mandal A., Biswas N., Guha A., Chatterjee S., Behera M., Kuotsu K., (2010), Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 1: 374-380.
https://doi.org/10.4103/0110-5558.76435
[39] Yeo P. L., Lim C. L., Chye S. M., Ling A. P. K., Koh R. Y., (2017), Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 11: 301-313.
https://doi.org/10.1515/abm-2018-0002
[40] Biswal S., Murthy P. N., Sahu J., Sahoo P., (2008), Vesicles of non-ionic surfactants (Niosomes) and drug delivery potential. Int. J. Pharm. Sci. Nanotechnol. 1: 1-8.
https://doi.org/10.37285/ijpsn.2008.1.1.1
[43] Sankhyan A., Pawar P., (2012), Recent trends in niosome as vesicular drug delivery system. J. Appl. Pharm. Sci. 2: 20-32. https://doi.org/10.7324/JAPS.2012.2625
[44] Muzzalupo R., Pérez L., Pinazo A., Tavano L., (2017), Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm. 529: 245-252.
https://doi.org/10.1016/j.ijpharm.2017.06.083
[45] Starzyk E., Frydrych A., Solyga A., (2008), Nanotechnology: Does it have a future in cosmetics? SÖFW-Journal. 134: 46-56.
[46] Morganti P., Muzzarelli R. A. A., Muzzarelli C., (2006), Multifunctional use of innovative chitin nanofibrils for skin care. J. Appl. Cosmetol. 24: 105-114.
[47] Anisha S., Kumar S. P., Kumar G. V., Garima G., (2010), Approaches used for penetration enhancement in transdermal drug delivery system. Int. J. Pharm. Sci. 2: 708-716.
[49] Chiari-Andréo B. G., De Almeida-Cincotto M. G. J., Oshiro J. A., Taniguchi C. Y. Y., Chiavacci L. A., Isaac V. L. B., (2019), Nanoparticles for cosmetic use and its application. In: Nanopart. Pharmac. Elsevier, pp 113-146.
https://doi.org/10.1016/B978-0-12-816504-1.00013-2
[51] Wang Z. H., Choi C. J., Kim B. K., Kim J. C., Zhang Z. D., (2003), Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon N Y. 41: 1751-1758.
https://doi.org/10.1016/S0008-6223(03)00127-1
[54] Hwang S. L., Kim J. C., (2008), In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly(ε-caprolacton) nanocapsules. J. Microencapsul. 25: 351-356.
https://doi.org/10.1080/02652040802000557
[55] Nascimento I. V., Souza M. K., Barbosa W. T., Fideles T. B., Marinho T. M. A., Fook M. V. L., (2016), Development and characterization of chitosan membranes as a system for controlled release of piperine. In: Mater. Sci. Forum. pp: 864-868.
https://doi.org/10.4028/www.scientific.net/MSF.869.864
[59] Sakamoto K., Lochhead R. Y., Maibach H. I., Yamashita Y., (2017), Cosmetic science and technology: Theoretical principles and applications. Elsevier, 1-835 p.
[60] Hosseinkhani B., Callewaert C., Vanbeveren N., Boon N., (2015), Novel biocompatible nanocapsules for slow release of fragrances on the human skin. N. Biotechnol. 32: 40-46.
https://doi.org/10.1016/j.nbt.2014.09.001
[61] Nohynek G. J., Dufour E. K., (2012), Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch Toxicol. 86: 1063-1075.
https://doi.org/10.1007/s00204-012-0831-5
[62] Maitra P., Carlo S., Ranade R. A., (2014), Nanoparticle compositions providing enhanced color for cosmetic Formulations. Application US11/970,882 events.
[63] Sharma R., (2020), Synthesis and comparative antibacterial activity of fatty acid capped Silver nanoparticles. J. Pure Appl. Microbiol. 1941-1947.
https://doi.org/10.22207/JPAM.14.3.33
[65] Sharma R., (2021), Synthesis of terminalia bellirica fruit extract mediated silver nanoparticles and application in photocatalytic degradation of wastewater from textile industries. Mater Today Proc. 44: 1995-1998.
https://doi.org/10.1016/j.matpr.2020.12.118
[67] Holladay R. J., Moeller W., Mehta D., Roy R., Julian H. J. Brooks M. G. M., (2011), Silver/Water, silver gels and silver-based compositions and methods for making and using the same. 1: 10-13.
[68] Lem K. W., Choudhury A., Lakhani A. A., Kuyate P., Haw J. R., Lee D. S., Iqbal Z., Brumlik C. J., (2011), Use of nanosilver in consumer products. Recent Pat Nanotechnol. 6: 60-72.
https://doi.org/10.2174/187221012798109318
[69] Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T., (2010), Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6: 570-574.
https://doi.org/10.1016/j.nano.2009.12.002
[70] Bong H. Ch., Yong T. L., Jin K. K., Jin Y. J.., (2009), Cosmetic pigment composition containing gold or silver nano-particles. Us 20090022765a1. 56: 1986-2001.
[72] Kheybari S., Samadi N., Hosseini S. V., Fazeli A., Fazeli M. R., (2010), Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. DARU, J. Pharm. Sci. 18: 168-172.
[73] Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Ramírez J. T., Yacaman M. J., (2005), The bactericidal effect of silver nanoparticles. Nanotechnol. 16: 2346-2353.
https://doi.org/10.1088/0957-4484/16/10/059
[74] Mukherji S., Ruparelia J., Agnihotri S., (2014), Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In: Nano-Antimicrobials Prog. Prospect. Springer, pp 225-251.
https://doi.org/10.1007/978-3-642-24428-5_8
[75] Robertson T. A., Sanchez W. Y., Roberts M. S., (2010), Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotechnol. 6: 452-468.
https://doi.org/10.1166/jbn.2010.1145
[76] Haveli S. D., Walter P., Patriarche G., Ayache J., Castaing J., Van Elslande E., Tsoucaris G., Wang P.-A., Kagan H. B., (2012), Hair fiber as a nanoreactor in controlled synthesis of fluorescent gold nanoparticles. Nano Lett. 12: 6212-6217.
https://doi.org/10.1021/nl303107w
[77] Lin Y., Yan L., (2004), Broad spectrum anti-bactericidal ointment nano. CN Patent. CN 1480045:
[79] Abbasi E., Aval S. F., Akbarzadeh A., Milani M., Nasrabadi H. T., Joo S. W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R., (2014), Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 9: 1-10.
https://doi.org/10.1186/1556-276X-9-247
[80] Myers V. S., Weir M. G., Carino E. V., Yancey D. F., Pande S., Crooks R. M., (2011), Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem. Sci. 2: 1632-1646.
https://doi.org/10.1039/c1sc00256b
[81] Gopidas K. R., Whitesell J. K., Fox M. A., (2003), Nanoparticle-cored dendrimers: Synthesis and characterization. J. Am. Chem. Soc. 125: 6491-6502.
https://doi.org/10.1021/ja029544m
[82] Simon F., Tournihac P., (2001), Cosmetic or dermatological topical compositions comprising dendritic polyesters. Application US09/397,517 events.
[83] Hori S., Iimura T., (2019), Copolymer having carbosiloxane dendrimer structure and composition and cosmetic containing the same. United States Pat. US. 2: 8.
[84] Sung C.-M., (2013), Compositions and methods for providing ultraviolet radiation protection. Application CN99812214A events.
[85] Vetrivel R., Navinselvakumar C., Samuel Ratna Kumar P. S., (2018), Carbon nanotubes and its applications - A review. Int. J. Mech. Prod. Eng. Res. Dev. 8: 288-293.
[86] Huang X., Kobos R. K., Xu G., (2007), Hair coloring and cosmetic compositions comprising carbon nanotubes. United States Pat. 1-29.
[87] Andrews R., Jacques D., Qian D., Rantell T., (2002), Multiwall carbon nanotubes: Synthesis and application. Acc Chem. Res. 35: 1008-1017.
https://doi.org/10.1021/ar010151m
[89] Huang X., Kobos R. K., Xu G., (2008), Peptide-based carbon nanotube hair colorants and their use in hair colorant and cosmetic compositions (2008). Application US11/093,873 events.
[91] Panchal A., Fakhrullina G., Fakhrullin R., Lvov Y., (2018), Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale. 10: 18205-18216.
https://doi.org/10.1039/C8NR05949G
[92] Sinitsa A. S., Lebedeva I. V., Polynskaya Y. G., Popov A. M., Knizhnik A. A., (2020), Molecular dynamics study of sp-defect migration in odd fullerene: Possible role in synthesis of abundant isomers of fullerenes. J. Phys. Chem. C. 124: 11652-11661.
https://doi.org/10.1021/acs.jpcc.0c00650
[95] Cusan C., Da Ros T., Spalluto G., Foley S., Janot J.-M., Seta P., Larroque C., Tomasini M. C., Antonelli T., Ferraro L., (2002), A new multi-charged C60 derivative: Synthesis and biological properties. Europ. J. Org. Chem. 2002: 2928-2934.
https://doi.org/10.1002/1099-0690(200209)2002:17<2928::AID-EJOC2928>3.0.CO;2-I
[100] Kato S., Taira H., Aoshima H., Saitoh Y., Miwa N., (2010), Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmetics. J. Nanosci Nanotechnol. 10: 6769-6774.
https://doi.org/10.1166/jnn.2010.3053
[101] Kato S., Aoshima H., Saitoh Y., Miwa N., (2014), Fullerene-C60 derivatives prevent UV-irradiation/TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions. J. Nanosci. Nanotechnol. 14: 3285-3291.
https://doi.org/10.1166/jnn.2014.8719
[102] Inui S., Aoshima H., Nishiyama A., Itami S., (2011), Improvement of acne vulgaris by topical fullerene application: Unique impact on skin care. Nanomedic. Nanotechnol. Biol. Med. 7: 238-241.
https://doi.org/10.1016/j.nano.2010.09.005
[106] Jaiswal P., Gidwani B., Vyas A., (2016), Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells, Nanomedic. Biotechnol. 44: 27-40.
https://doi.org/10.3109/21691401.2014.909822
[108] Gordillo-Galeano A., Mora-Huertas C. E., (2018), Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 133: 285-308.
https://doi.org/10.1016/j.ejpb.2018.10.017
[110] Müller R. H., Radtke M., Wissing S. A., (2002), Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54: S131--S155.
https://doi.org/10.1016/S0169-409X(02)00118-7
[111] Perrie Y., (2013), Pharmaceutical nanotechnology and nanomedicines. Aulton's Pharm. Des. Manuf. Med. 53: 777-795.
[113] Song C., Liu S., (2005), A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol. 36: 116-119.
https://doi.org/10.1016/j.ijbiomac.2005.05.003
[114] Müller R. H., Petersen R. D., Hommoss A., Pardeike J., (2007), Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 59: 522-530.
https://doi.org/10.1016/j.addr.2007.04.012
[115] Mei Z., Wu Q., Hu S., Li X., Yang X., (2005), Triptolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev. Ind. Pharm. 31: 161-168.
https://doi.org/10.1081/DDC-200047791
[116] Watson R. E. B., Long S. P., Bowden J. J., Bastrilles J. Y., Barton S. P., Griffiths C. E. M., (2008), Repair of photoaged dermal matrix by topical application of a cosmetic "antiageing" product. Br. J. Dermatol. 158: 472-477.
https://doi.org/10.1111/j.1365-2133.2007.08364.x
[117] Morganti P., Yuanhong L., Morganti G., (2007), Nano-structured products: technology and future. J. Appl. Cosmetol. 25: 161-165.
[119] Guterres S. S., Alves M. P., Pohlmann A. R., (2007), Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug. Target. Insights. 2: 117739280700200.
https://doi.org/10.1177/117739280700200002
[120] Sonavane G., Tomoda K., Sano A., Ohshima H., Terada H., Makino K., (2008), In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B. Biointerf. 65: 1-10.
https://doi.org/10.1016/j.colsurfb.2008.02.013
[121] Menon G. K., Brandsma J. L., Schwartz P. M., (2007), Particle-mediated gene delivery and human skin: Ultrastructural observations on stratum corneum barrier structures. Skin Pharmacol. Physiol. 20: 141-147.
https://doi.org/10.1159/000098165
[122] Mulholland W. J., Arbuthnott E. A. H., Bellhouse B. J., Cornhill J. F., Austyn J. M., Kendall M. A. F., Cui Z., Tirlapur U. K., (2006), Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J. Invest. Dermatol. 126: 1541-1548.
https://doi.org/10.1038/sj.jid.5700290
[123] Senthil B., Devasena T., Prakash B., Rajasekar A., (2017), Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J. Photochem. Photobiol. B. Biol. 177: 1-7.
https://doi.org/10.1016/j.jphotobiol.2017.10.010
[124] Gharpure S., Kirtiwar S., Palwe S., Akash A., Ankamwar B., (2019), Non-antibacterial as well as non-anticancer activity of flower extract and its biogenous silver nanoparticles. Nanotechnology. 30: 195701.
https://doi.org/10.1088/1361-6528/ab011a
[125] Ankamwar B., Lai T. C., Huang J. H., Liu R. S., Hsiao M., Chen C. H., Hwu Y. K., (2010), Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 21: 75102-75105.
https://doi.org/10.1088/0957-4484/21/7/075102
[126] Saroha K., Nanda S., Yadav N., (2010), Proniosome gel: Potential carrier system in topical/transdermal delivery for drugs and cosmetics/cosmeceuticals. Pharm Rev. 8: 35-39.
[128] Cohen D., Soroka Y., Ma'or Z., Oron M., Portugal-Cohen M., Brégégère F. M., Berhanu D., Valsami-Jones E., Hai N., Milner Y., (2013), Evaluation of topically applied copper (II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol Vitr. 27: 292-298.
https://doi.org/10.1016/j.tiv.2012.08.026
[129] Landsiedel R., Ma-Hock L., Van Ravenzwaay B., Schulz M., Wiench K., Champ S., Schulte S., Wohlleben W., Oesch F., (2010), Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology. 4: 364-381.
https://doi.org/10.3109/17435390.2010.506694
[131] Oberdörster G., Oberdörster E., Oberdörster J., (2005), Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113: 823-839.
https://doi.org/10.1289/ehp.7339
[132] Dhawan A., Taurozzi J. S., Pandey A. K., Shan W., Miller S. M., Hashsham S. A., Tarabara V. V, (2006), Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci \& Technol. 40: 7394-7401.
https://doi.org/10.1021/es0609708