[1] Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A., (2018), Global cancer statistics GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394-424.
https://doi.org/10.3322/caac.21492
[3] Jemal A., Bray F., Ferly J., Mellisa M., Ward E. M., (2011), Global cancer facts & figures. American Cancer Society. A Cancer J. Clinic. 61: 69-90.
https://doi.org/10.3322/caac.20107
[4] Iqbal M. J., Rashid U., Javed Z., (2022), Biosynthesized silver nanoparticles and miR34a mimics mediated activation of death receptor in MCF-7 human breast cancer cell lines. Cancer Nano. 13: 31-36.
https://doi.org/10.1186/s12645-022-00137-8
[6] Tabrez S., Priyadarshini M., Urooj M., Shakil S., Md Ashraf G., Shahnawaz K. M., Kamal M. A., Alam Q., Jabir N. R., Abuzenadah A. M., Chaudhary A. G. A., Damanhouri G. A., (2013), Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J. Environ. Sci. Health Part C. Environ. Carcinog. Ecotoxicol. Rev. 31: 67-98.
https://doi.org/10.1080/10590501.2013.763577
[7] Ahmed N., Gupta A., Kumar., Nimesh S., (2016), Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract Artif. Cells Nanomed. Biotechnol. 45: 1-9.
https://doi.org/10.1080/21691401.2016.1215328
[8] Roy C., Sarkar A., Ghosh C., (2015), Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Biomol. Spectrosc. 146: 286-291.
https://doi.org/10.1016/j.saa.2015.02.058
[9] Saravanakumar., (2016), Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells Nanomed. Biotechnol. 45: 1-7.
https://doi.org/10.1080/21691401.2016.1203795
[10] Eun Young A., Sang Woo Sh., Kyeongsoon K., Youmie Park F., (2022), Green synthesis of Titanium dioxide nanoparticles by upcycling mangosteen (Garcinia mangostana) pericarp extract. Nanoscale Res. Lett. 17: 1-12.
https://doi.org/10.1186/s11671-022-03678-4
[11] Dasari S., (2013), Biosynthesis, characterization, antibacterial and antioxidant activity of silver nanoparticles produced by lichens. J. Bionanosci.7: 237-242.
https://doi.org/10.1166/jbns.2013.1140
[12] Chauhan N., Tyagi A. K., Kumar P., Malik A., (2016), Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol. 7: 1-13.
https://doi.org/10.3389/fmicb.2016.01748
[13] Krupa A. N. D., Raghavan V., (2014), Biosynthesis of silver nanoparticles using Aegle marmelos (bael) fruit extract and its application to prevent adhesion of bacteria: A strategy to control microfouling. Bioinorg. Chem. Appl. Article ID 949538.
https://doi.org/10.1155/2014/949538
[14] Vasanth N., Melchias G., Kumaravel P., (2018), Green synthesis of silver nanoparticles mediated by coccinia grandis and Phyllanthus emblica: A comparative comprehension. Appl. Nanosc. 8: 205-219.
https://doi.org/10.1007/s13204-018-0739-3
[15] Ankanna S., Prasad T. N., Elumalai E. K., Savithramma N., (2010), Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Digest. J. Nanomater. Biostruct. 5: 369-372.
[16] Pavani K., Divya V., Veena V., Adity I., Devakinandan M., (2014), Influence of bioengineered zinc nanoparticles and Zinc metal on Cicer arietinum seedlings growth. Asian J. Agri. Biol. 2: 216-223.
[17] Hazhir N., Chekin F., Bakhsh Raoof J., Fathi Sh., (2020), Anticancer activity of doxorubicin conjugated to polymer/carbon basednanohybrid against MCF-7 breast and HT-29 colon cancer cells . Int. J. Nano Dimens. 12: 11-19.
[18] Tayarani N., Mousavi S. H., Asghari M., Sadeghnia H. R., (2010), Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell. Molec. Neurobiol. 30: 591-598.
https://doi.org/10.1007/s10571-009-9484-1
[19] Daysi Diaz D., Madadi Gholipour H., Bazian M., Thapa B., Beltran Huarac J., (2022), Photodynamic therapeutic effect of nanostructured metal sulfde photosensitizers on cancer treatment. Nanoscale Res. Lett. 17: 1-24.
https://doi.org/10.1186/s11671-022-03674-8
[20] Verma P., Maheshwari S. K., (2019), Applications of silver nanoparticles in diverse sectors. Int. J. Nano Dimens. 10: 18-36.
[21] Ohnishi Takako K., Masanori I., Kazuya I., Sunhwa K., Ayako S., Eiji K., Toshio I., Takashi M., Tatsuhiko K., Tadatsugu T., Hiroshi T., Toshiyuki T., (2004), Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 428: 758-763.
https://doi.org/10.1038/nature02444