This research explores how two-dimensional honeycomb materials can be used in advanced electronics, focusing on zigzag honeycomb nanoribbons. These nanoribbons can create zero-energy band gaps, enabling helical spin current edge states. The study investigates the quantum spin Hall state, showcasing the adaptability of the Kane-Mele model in various honeycomb lattices. In addition to the theoretical discussions, this study presents a detailed Hamiltonian, performs band structure computations, and introduces a novel spin-filtering technique for zigzag nanoribbons. This method enhances our understanding of edge-localized quantum states and can revolutionize spintronics. By revealing the quantum states in honeycomb nanoribbons, this study contributes to the advancement of electronics and offers a promising path for highly efficient spin-based technologies.
Ghorbani J., (2023), Magnetic edge states and edge current in honeycomb zigzag nanoribbons by Kane–Mele–Hubbard model. Solid State Communic. 371: 115250. https://doi.org/10.1016/j.ssc.2023.115250
Ezawa M., Nagaosa N., (2013), Interference of topologically protected edge states in silicene nanoribbons. Rev. B. 88: 121401(R). https://doi.org/10.1103/PhysRevB.88.121401
Baradaran A., Ghaffarian M., (2020), Bias-voltage-induced topological phase transition in finite size quantum spin Hall systems in the presence of a transverse electric field. E: Low-dimens.l Sys. Nanostruc. 122: 114173-114177. https://doi.org/10.1016/j.physe.2020.114173
Brey L., Fertig H. A., (2006), Electronic states of graphene nanoribbons studied with the dirac equation. Rev. B. 73: 235411-235416. https://doi.org/10.1103/PhysRevB.73.235411
Haldane F. M., (1988), Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett. 61: 2015-2021. https://doi.org/10.1103/PhysRevLett.61.2015
Ezawa M., (2012), A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14: 033003. https://doi.org/10.1088/1367-2630/14/3/033003
Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2). Molec. Struc: THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015
Dadashi H., Hajinasiri R., (2020), Biosynthesis of Cu and CuO nanoparticles using aqueous leaves extract of Sambucus nigra L. J. Nano Dimens. 11: 405-411. 20.1001.1.20088868.2020.11.4.10.4
Abdel Halim S., (2018), Electronic structures and stabilities of endohedral metallofullerenes TM@C34 using DFT approach. J. Nano Dimens. 9: 421-434. 20.1001.1.20088868.2018.9.4.9.9
Esfahani S., (2023), Assessing the drug delivery of ibuprofen by the assistance of metal-doped graphenes: Insights from density functional theory. Diamond and Related Mater. 135: 109893-109898. 1016/j.diamond.2023.109893
Saadh M. J., (2024), Density functional theory assessments of an iron-doped graphene platform towards the hydrea anticancer drug delivery. Diamond and Related Mater.141: 110683-110686. 1016/j.diamond.2023.110683
Pecho R. D. C., (2023), Molecular insights into the sensing function of an oxidized graphene flake for the adsorption of Avigan antiviral drug. Theoret. Chem. 1227: 114240-114246. 10.1016/j.comptc.2023.114240
Saadh M. J., (2023), An enhanced adsorption of paracetamol drug using the iron-encapsulated boron carbide nanocage: DFT outlook. Comput. Theoret. Chem. 1227: 114421-114427. 1016/j.comptc.2023.114421
Ghorbani, J., Ghaffarian, M., Tashakori, H., & Baradaran, A. (2024). Quantum spin hall effect on pseudo-graphene zigzag nanoribbons. International Journal of Nano Dimension, 15(1), 93-101. doi: 10.22034/ijnd.2024.2002694.2279
MLA
Javad Ghorbani; Mehdi Ghaffarian; Hasan Tashakori; Alireza Baradaran. "Quantum spin hall effect on pseudo-graphene zigzag nanoribbons". International Journal of Nano Dimension, 15, 1, 2024, 93-101. doi: 10.22034/ijnd.2024.2002694.2279
HARVARD
Ghorbani, J., Ghaffarian, M., Tashakori, H., Baradaran, A. (2024). 'Quantum spin hall effect on pseudo-graphene zigzag nanoribbons', International Journal of Nano Dimension, 15(1), pp. 93-101. doi: 10.22034/ijnd.2024.2002694.2279
VANCOUVER
Ghorbani, J., Ghaffarian, M., Tashakori, H., Baradaran, A. Quantum spin hall effect on pseudo-graphene zigzag nanoribbons. International Journal of Nano Dimension, 2024; 15(1): 93-101. doi: 10.22034/ijnd.2024.2002694.2279