Quantum spin hall effect on pseudo-graphene zigzag nanoribbons

Document Type : Reasearch Paper

Authors

1 Department of Physics, Qom Branch, Islamic Azad University, Qom, Iran.

2 Department of Physics, University of Qom, Qom, Iran.

Abstract

This research explores how two-dimensional honeycomb materials can be used in advanced electronics, focusing on zigzag honeycomb nanoribbons. These nanoribbons can create zero-energy band gaps, enabling helical spin current edge states. The study investigates the quantum spin Hall state, showcasing the adaptability of the Kane-Mele model in various honeycomb lattices. In addition to the theoretical discussions, this study presents a detailed Hamiltonian, performs band structure computations, and introduces a novel spin-filtering technique for zigzag nanoribbons. This method enhances our understanding of edge-localized quantum states and can revolutionize spintronics. By revealing the quantum states in honeycomb nanoribbons, this study contributes to the advancement of electronics and offers a promising path for highly efficient spin-based technologies.

Highlights

 

Keywords

Main Subjects


 

  1. Geim A. K., Novoselov K. S., (2007), The rise of graphene. Nature Mater. 6: 183-191. https://doi.org/10.1038/nmat1849
  2. Tao L., (2017), Silicene field-effect transistors operating at room temperature. Nature Nanotechnol. 10: 227-231. https://doi.org/10.1038/nnano.2014.325
  3. Dávila M. E., (2014), Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16: 095002. https://doi.org/10.1088/1367-2630/16/9/095002
  4. Tao C., (2011), Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7: 616-620. https://doi.org/10.1038/nphys1991
  5. Yazyev O. V., (2010), Emergence of magnetism in graphene materials and nanostructures. on Prog. Phys. 73: 056501. https://doi.org/10.1088/0034-4885/73/5/056501
  6. Ghorbani J., (2023), Magnetic edge states and edge current in honeycomb zigzag nanoribbons by Kane–Mele–Hubbard model. Solid State Communic. 371: 115250. https://doi.org/10.1016/j.ssc.2023.115250
  7. Enoki T., (2012), Zigzag and armchair edges in graphene. Carbon. 50: 3141-3145. https://doi.org/10.1016/j.carbon.2011.10.004
  8. Ezawa M., Nagaosa N., (2013), Interference of topologically protected edge states in silicene nanoribbons. Rev. B. 88: 121401(R). https://doi.org/10.1103/PhysRevB.88.121401
  9. Baradaran A., Ghaffarian M., (2020), Bias-voltage-induced topological phase transition in finite size quantum spin Hall systems in the presence of a transverse electric field. E: Low-dimens.l Sys. Nanostruc. 122: 114173-114177. https://doi.org/10.1016/j.physe.2020.114173
  10. Brey L., Fertig H. A., (2006), Electronic states of graphene nanoribbons studied with the dirac equation. Rev. B. 73: 235411-235416. https://doi.org/10.1103/PhysRevB.73.235411
  11. Kane C. L., Mele E. J., (2005), Quantum spin hall effect in Graphene. Rev. Lett. 95: 226801-226805. https://doi.org/10.1103/PhysRevLett.95.226801
  12. Kane C. L., Mele E. J., (2005). Z2 topological order and the quantum spin hall effect. Rev. Lett.  95: 146802-146810. https://doi.org/10.1103/PhysRevLett.95.146802
  13. Haldane F. M., (1988), Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett. 61: 2015-2021. https://doi.org/10.1103/PhysRevLett.61.2015
  14. Hasan M. Z., Kane C. L., (2010), Colloquium: Topological insulators. Modern Phys. 82: 3045-3052. https://doi.org/10.1103/RevModPhys.82.3045
  15. Ezawa M., (2012), A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14: 033003. https://doi.org/10.1088/1367-2630/14/3/033003
  16. Cahangirov S., (2009), Two- and one-dimensional honeycomb structures of silicon and germanium. Rev. Lett. 102: 236804-236814. https://doi.org/10.1103/PhysRevLett.102.236804
  17. Xu, Y., (2013), Large-gap quantum spin Hall insulators in tin films. Rev. Lett. 111: 136804-136813. https://doi.org/10.1103/PhysRevLett.111.136804
  18. 18.    Shitade A., (2009), Quantum spin hall effect in a transition metal oxide Na2IrO3. Phys. Rev. Lett. 102: 256403-256414. https://doi.org/10.1103/PhysRevLett.102.256403  
  19. Wang Z. F., (2013), Organic topological insulators in organometallic lattices. Nature Communic. 4: 1471-1477. https://doi.org/10.1038/ncomms2451
  20. Avsar A., (2017), Spin–orbit proximity effect in graphene. Nature Communic. 8: 702-709. https://doi.org/ 10.1038/ncomms5875
  21. Han W., (2014), Graphene spintronics. Nature Nanotechnol. 9: 794-807. https://doi.org/10.1038/nnano.2014.214
  22. Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2). Molec. Struc: THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015
  23. Dadashi H., Hajinasiri R., (2020), Biosynthesis of Cu and CuO nanoparticles using aqueous leaves extract of Sambucus nigra L.  J. Nano Dimens. 11: 405-411. 20.1001.1.20088868.2020.11.4.10.4
  24. Abdel Halim S., (2018), Electronic structures and stabilities of endohedral metallofullerenes TM@C34 using DFT approach.  J. Nano Dimens. 9: 421-434. 20.1001.1.20088868.2018.9.4.9.9
  25. Esfahani S., (2023), Assessing the drug delivery of ibuprofen by the assistance of metal-doped graphenes: Insights from density functional theory. Diamond and Related Mater. 135: 109893-109898. 1016/j.diamond.2023.109893
  26. Saadh M. J., (2024), Density functional theory assessments of an iron-doped graphene platform towards the hydrea anticancer drug delivery. Diamond and Related Mater.141: 110683-110686. 1016/j.diamond.2023.110683
  27. Pecho R. D. C., (2023), Molecular insights into the sensing function of an oxidized graphene flake for the adsorption of Avigan antiviral drug.  Theoret. Chem. 1227: 114240-114246. 10.1016/j.comptc.2023.114240
  28. Saadh M. J., (2023), An enhanced adsorption of paracetamol drug using the iron-encapsulated boron carbide nanocage: DFT outlook. Comput. Theoret. Chem. 1227: 114421-114427. 1016/j.comptc.2023.114421